Propulsion performance of a skeleton-strengthened fin
نویسندگان
چکیده
منابع مشابه
Propulsion performance of a skeleton-strengthened fin.
We examine numerically the performance of a thin foil reinforced by embedded rays resembling the caudal fins of many fishes. In our study, the supporting rays are depicted as nonlinear Euler-Bernoulli beams with three-dimensional deformability. This structural model is then incorporated into a boundary-element hydrodynamic model to achieve coupled fluid-structure interaction simulation. Kinemat...
متن کاملFlapping propulsion using a fin ray
We calculate optimal driving motions for a fin ray in a two-dimensional inviscid fluid, which is a model for caudal fin locomotion. The driving is sinusoidal in time, and consists of heaving, pitching and a less-studied motion called ‘shifting’. The optimal phases of shifting relative to heaving and pitching for maximum thrust power and efficiency are calculated. The optimal phases undergo jump...
متن کاملThe origin of a new fin skeleton through tinkering.
Adipose fins are positioned between the dorsal and caudal fins of many teleost fishes and primitively lack skeleton. In at least four lineages, adipose fins have evolved lepidotrichia (bony fin rays), co-opting the developmental programme for the dermal skeleton of other fins into this new territory. Here I provide, to my knowledge, the first description of lepidotrichia development in an adipo...
متن کاملPerformance limits of labriform propulsion and correlates with fin shape and motion.
Labriform locomotion, which is powered by oscillating the paired pectoral fins, varies along a continuum from rowing the fins back and forth to flapping the fins up and down. It has generally been assumed (i) that flapping is more mechanically efficient than rowing, a hypothesis confirmed by a recent simulation experiment, and (ii) that flapping should be associated with wing-shaped fins while ...
متن کاملThe hydrodynamics of ribbon-fin propulsion during impulsive motion.
Weakly electric fish are extraordinarily maneuverable swimmers, able to swim as easily forward as backward and rapidly switch swim direction, among other maneuvers. The primary propulsor of gymnotid electric fish is an elongated ribbon-like anal fin. To understand the mechanical basis of their maneuverability, we examine the hydrodynamics of a non-translating ribbon fin in stationary water usin...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Journal of Experimental Biology
سال: 2008
ISSN: 1477-9145,0022-0949
DOI: 10.1242/jeb.016279